34,460 research outputs found

    Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer

    Get PDF
    A scheme for linear optical implementation of fault-tolerant quantum computation is proposed, which is based on an error-detecting code. Each computational step is mediated by transfer of quantum information into an ancilla system embedding error-detection capability. Photons are assumed to be subjected to both photon loss and depolarization, and the threshold region of their strengths for scalable quantum computation is obtained, together with the amount of physical resources consumed. Compared to currently known results, the present scheme reduces the resource requirement, while yielding a comparable threshold region.Comment: 9 pages, 7 figure

    Controlled Unitary Operation between Two Distant Atoms

    Full text link
    We propose a scheme for implementing a controlled unitary gate between two distant atoms directly communicating through a quantum transmission line. To achieve our goal, only a series of several coherent pulses are applied to the atoms. Our scheme thus requires no ancilla atomic qubit. The simplicity of our scheme may significantly improve the scalability of quantum computers based on trapped neutral atoms or ions

    Quantum Hall Ferromagnetism in a Two-Dimensional Electron System

    Full text link
    Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction Ī½=1/3\nu = 1/3) and spin-unpolarized (Ī½=2/5\nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.Comment: 15 pages, 5 figure

    Blow-up behavior of collocation solutions to Hammerstein-type volterra integral equations

    Get PDF
    We analyze the blow-up behavior of one-parameter collocation solutions for Hammerstein-type Volterra integral equations (VIEs) whose solutions may blow up in finite time. To approximate such solutions (and the corresponding blow-up time), we will introduce an adaptive stepsize strategy that guarantees the existence of collocation solutions whose blow-up behavior is the same as the one for the exact solution. Based on the local convergence of the collocation methods for VIEs, we present the convergence analysis for the numerical blow-up time. Numerical experiments illustrate the analysis

    Phenomenological Theory of Superconductivity and Magnetism in Ho1āˆ’x_{1-x}Dyx_xNi2_2B2_2C

    Full text link
    The coexistence of the superconductivity and magnetism in the Ho1āˆ’x_{1-x}Dyx_xNi2_2B2_2C is studied by using Ginzburg-Landau theory. This alloy shows the coexistence and complex interplay of superconducting and magnetic order. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe phenomenologically the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of TcT_c in Ho1āˆ’x_{1-x}Dyx_xNi2_2B2_2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.Comment: 4 pages, 3 figures, REVTeX, submitted to PR

    Compressible Sub-Alfvenic MHD turbulence in Low-beta Plasmas

    Full text link
    We present a model for compressible sub-Alfvenic isothermal magnetohydrodynamic (MHD) turbulence in low-beta plasmas and numerically test it. We separate MHD fluctuations into 3 distinct families - Alfven, slow, and fast modes. We find that, production of slow and fast modes by Alfvenic turbulence is suppressed. As a result, Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.Comment: 4 pages, 8 figures, Phys. Rev. Lett., in pres
    • ā€¦
    corecore